Protecting hearing with nanoengineered drug delivery systems

Supervisors: A/Prof Andrew Wise

Sensorineural hearing loss is a common sensory deficit which typically becomes progressively worse over time having a significant impact on a person’s life. If hearing loss has progressed to such an extent that no benefit is gained from using a hearing aid then only a cochlear implant can return some function. Currently, there are no effective therapies to prevent hearing loss or to protect any remaining hearing after cochlear implantation.

The  delicate  sensory  cells  in  the  cochlea  are very sensitive to trauma such as loud noise and a certain class of antibiotics used to fight infection. When the sensory cells die the auditory neurons that make connections with them also die. The auditory neurons are the target of a cochlear implant, which works by electrically stimulating the neurons to effectively bypass the lost sensory cells.

This project aims to protect the sensory cells and auditory neurons from damage in order to prevent sensorineural hearing loss. We will use cutting edge nanotechnology to provide long term and controlled delivery of therapeutic drugs in order to prevent progressive hearing loss and to protect residual hearing following cochlear implantation using in vivo deafness models.

This project will suit a student with a background in physiology, pharmacokinetics, neuroscience, biomedical science or biomedical engineering.

image description

Make a donation